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Abstract
Two-dimensional condensed matter is realized in increasingly diverse forms that are accessible
to experiment and of potential technological value. The properties of these systems are
influenced by many length scales and reflect both generic physics and chemical detail. To unify
their physical description is therefore a complex and important challenge. Here we investigate
the distribution of experimentally estimated critical exponents, β , that characterize the evolution
of the order parameter through the ordering transition. The distribution is found to be bimodal
and bounded within a window ∼0.1 � β � 0.25, facts that are only in partial agreement with
the established theory of critical phenomena. In particular, the bounded nature of the
distribution is impossible to reconcile with the existing theory for one of the major universality
classes of two-dimensional behaviour—the XY model with four-fold crystal field—which
predicts a spectrum of non-universal exponents bounded only from below. Through a
combination of numerical and renormalization group arguments we resolve the contradiction
between theory and experiment and demonstrate how the ‘universal window’ for critical
exponents observed in experiment arises from a competition between marginal operators.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

New types of two-dimensional systems on which meaningful
physical experiments can be performed include optical lat-
tices of trapped atomic gases [1], magnetic surfaces [2] and
‘δ-doped’ magnetic layers [3]. These add to a list of well estab-
lished two-dimensional systems that includes ultrathin mag-
netic films [4], atomic monolayers (both physi- and chemisor-
bed) [5–8], crystalline surfaces [9], superconducting layers
[10] and arrays of interacting Josephson junctions [11]. Recent
theoretical developments on the concept of ‘extended univer-
sality’ [12], the effects of finite size [13, 14] and the dipolar
interaction [15, 16] should be particularly relevant to under-
standing experiments on these systems, both old and new.

4 Present address: Department of Physics, Uppsala University, Box 530,
751 21 Uppsala, Sweden.

The key experiment on two-dimensional systems is to test
the existence and temperature dependence of a magnetic or
crystalline order parameter m(T ). In cases where m can be
measured experimentally (which excludes, for example, super-
fluid films [7]), this is invariably found to approximate a power
law over a certain range of temperature: m∼(Tc−T )β , where
Tc is the transition temperature. Theory predicts a limited num-
ber of possibilities for the value of the exponent β , as dictated
by the universality class of the system. In two dimensions
crystal symmetries and consequent universality classes are rel-
atively few. We show here that the Ising, XY and XY with four-
fold crystal field anisotropy (XYh4) are the three main experi-
mentally relevant classes. The three- and four-state Potts mod-
els provide additional universality classes observed in exper-
iments on adsorbed gaseous monolayers [17, 18] and surface
reconstruction [9]. For the Ising, three- and four-state Potts
models, β = 1

8 , 1
9 ,

1
12 respectively. For the XY model, one
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Figure 1. Histogram of β values for all two-dimensional systems
reported in tables A.1–A.3. The universal window is highlighted by
the grey shading. Criteria for inclusion in the data set are discussed
in the appendix, and the occurrence of systems with exponent values
outside the window is discussed in section 1.

expects β̃ = 0.23, a universal number that arises in the finite
size scaling at the Kosterlitz–Thouless–Berezinskii (KTB)
phase transition [19, 20], though not a conventional critical
exponent [21]. For XYh4, theory predicts a continuously vari-
able critical exponent β ∝ 1/h4 and thus a continuous spec-
trum of values when sampled over many real systems (see
[22, 23] and this work).

We have tested these ideas by means of an extensive sur-
vey of experimental two-dimensional critical exponents, inclu-
ding data for magnetic ultrathin films, layered magnets that
exhibit a temperature regime of two-dimensional behaviour
[24–27], order–disorder transitions in adsorbed gaseous mono-
layers [17, 18], and surface reconstructions [9]. The results are
presented in figure 1 and in the appendix. As observed previ-
ously on more limited data sets [4, 21, 28, 29], the distribution
of β is distinctly bimodal, with strong peaks at β = 0.12 and
0.23, as expected for the Ising and XY models. In several
cases ideal Ising [24, 30] and XY [25–27, 31, 32] behaviour
has been confirmed in great detail by measuring thermody-
namic quantities other than the magnetization. Likewise there
is compelling evidence for Potts universality in several non-
magnetic systems [17, 18, 33, 34, 9] (β = 1

8 , 1
9 on the his-

togram in figure 1). However, the XYh4 universality is more
elusive. Of particular relevance to the present discussion are
the ferromagnetic monolayer Fe/W(100) [32] and the layered
ferromagnets Rb2CrCl4 [25] and K2CuF4 [26], easy plane sys-
tems which have been shown to exhibit the full range of ideal
XY behaviour despite their four-fold symmetry. Another very
well characterized easy plane system with a four-fold crystal
field is the layered antiferromagnet K2FeF4 [31], but this is
not XY-like, with β = 0.15 intermediate between the XY and
Ising values. Claims for XYh4 universality have been made

for the ferromagnetic films Fe/[Au or Pd](100) [35], charac-
terized only to a limited extent, as well as the order–disorder
transitions of H/W(011) [36] and O/Mo(110) [37], for which
full sets of critical exponents are available. The behaviour
of these candidates for XYh4 is seen to fall into two cate-
gories, which on closer inspection appear to be related to the
strength of h4: those with weak h4 are XY-like with β≈0.23,
while those with stronger h4 have exponents in between the
XY and Ising limits, 0.125 � β � 0.23. Most strikingly, there
is no experimental evidence of the divergence of the expo-
nent β implied by β∝1/h4. Instead, most experimental data
that cannot be ascribed to the Potts classes lie in a ‘univer-
sal window’, bounded by the Ising and XY values. There
are exceptions at the upper bound where crossover to three-
dimensional behaviour may increase the value of β upwards
from 0.23 [21, 38]. However, it is clear from the histogram
that the majority of systems are indeed encompassed in a lim-
ited range between the Ising and XY values.

The rest of the paper is structured as follows. In the next
section we review the symmetries and universality classes
appearing in experimental two-dimensional systems. In sec-
tion 3 we calculate the critical exponents for the XYh4 univer-
sality class from the renormalization group starting from the
generalized Villain Hamiltonian. The calculation predicts that
the value of β should be non-universal, varying inversely with
the crystal field strength, for weak perturbations. In section
4 we analyse numerical data for different crystal fields. Our
simulation data are consistent with experiment, as shown in
figure 1, but in flagrant disagreement with the predictions of
section 3. A resolution of this disagreement is proposed, which
is examined in detail in the subsequent discussion. Section 5
makes head to head comparisons between materials believed
to correspond to the strong and weak crystal field case. We
argue that, in the case of antiferromagnets, quantum fluctu-
ations lead to spin dimensional reduction and an increase in
the effective crystal field strength, compared with similarly
parametrized ferromagnets and classical systems. Section 6
deals with other critical exponents and discusses the experi-
mental consequences of finite size corrections to the thermo-
dynamic limit.

2. Universality classes in two dimensions

Before we address the main question of why the universal win-
dow exists, it is relevant to specify the occurrence and relation-
ships between two-dimensional universality classes. Consider-
ing first magnetic degrees of freedom, we ignore the possibility
of truly Heisenberg behaviour, remarking that the broken trans-
lational symmetry inherent to layers or surfaces, combined
with a condition of crystal periodicity, means all real systems
have at least one p-fold axis, which necessarily introduces rel-
evant perturbations. Thus, although pure Heisenberg behaviour
may be observable over a restricted temperature range [39, 40],
it must give way to behaviour characteristic of the perturbations
at temperatures near to the phase transition. These perturba-
tions take the form of axial anisotropy (either easy axis or easy
plane) and p-fold in-plane anisotropy (p = 1, 2, 3, 4 and
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Table 1. Classification of continuous transitions which can be
observed in two-dimensional magnetic systems and in structural
order–disorder transitions on surfaces. • indicates the occurrence of a
particular universality class, whereas × indicates its absence. The
special case of the square lattice dipolar system is discussed in
the text.

Universality
class

Magnetic
systems

Adsorbed
systems

Ising • •
XY • •
XYh4 • •
Three-state Potts × •
Four-state Potts × •

6). Easy-axis systems are generally Ising-like (despite the fact
that the normal to the plane is usually a polar axis) while easy
plane systems with p = 2–6 should be described by the XYh p

model. XYh2 is in the Ising class, whereas XYh3 is in the
three-state Potts class, although it is very unlikely in magnetic
systems owing to time reversal symmetry (we found no exam-
ples). XYh4 constitutes a universality class distinct from the
four-state Potts class, while the phase transition in XYh6 is
in the XY class [22]. Inclusion of the dipolar interaction on
lattices other than the square lattice does not add extra uni-
versality classes. However, the case of the square lattice must
be regarded as an unsolved problem: perturbative calculations
[41] and numerical results [42–44] suggest that the square lat-
tice dipolar model belongs to XYh4, but the renormalization
group calculations of Maier and Schwabl indicate a different
set of critical exponents [15]. The experimental data consid-
ered here are consistent with the former result rather than with
the latter, but Maier and Schwabl’s prediction could yet be born
out on an as yet undiscovered ideal model dipolar system. At
least as far as the existing experimental data set is concerned,
we conclude that, for magnetic systems, there are only three
main universality classes: Ising, XY and XYh4.

The situation is essentially the same in non-magnetic sys-
tems [45, 46] but with the additional possibility of the three- or
four-state Potts classes due to competing interactions beyond
nearest neighbour [46, 47]. Indeed, Schick [46] used argu-
ments from Landau theory to classify the phase transitions of
two-dimensional adsorbed systems into only four classes: the
Ising, XYh4, three- and four-state Potts. This set is supple-
mented by a chiral three-state Potts class which shares con-
ventional exponents with the pure three-state Potts class [48]
(hence for present purposes we shall treat these two cases as a
single class). One result of the current work is that the pure XY
class is also relevant to order–disorder transitions in adsorbed
layers. Combining these observations we have five universality
classes for structural systems and three for magnetic systems,
as summarized in table 1.

3. Calculation of critical exponents

The relationship between the Ising, XY, XYh p and clock mod-
els may be discussed with reference to the following Hamilto-
nian:

Hp = −J
∑

〈i, j〉
cos(θi−θ j)−h p

∑

i

cos(pθi), (1)

in which the θi are the orientations of classical spins of unit
length situated on a square lattice with periodic boundary con-
ditions and confined to the XY plane, J is the coupling con-
stant and h p is the p-fold crystal field. It should be noted that
unlike real systems, the lattice symmetry in computer simula-
tions does not constrain the spin symmetry, and consequently
the adoption of a square lattice does not restrict the gener-
ality of our arguments. In the limit h p→∞, the Hamilto-
nian (1) is called a clock model, since θi is restricted to dis-
crete values evenly spaced around a circle: 2π(n/p), n =
1, . . . , p−1. José, Kadanoff, Kirkpatrick and Nelson (JKKN)
[22] have shown that for p > 4, h p is an irrelevant scal-
ing field down to intermediate temperatures, with the result
that fluctuations restore the continuous symmetry of the 2dXY
model above a threshold temperature, leading to a KTB tran-
sition [20] and quasi-long-range order over a finite range of
temperature. Recently it has been shown [12] that a similar
scenario remains valid even for infinitely strong crystal field
strength, with the result that fluctuations restore continuous
symmetry for p-state clock models with p > 4, although for
4 < p � 6 this occurs above the KTB temperature, TKT. For
p = 2 and 3, h p is relevant, leading to phase transitions in the
Ising and three-state Potts universality class respectively. h4,
on the other hand, is a marginal perturbation [22]. A second-
order phase transition is predicted with non-universal critical
exponents depending on the field strength. As h4→∞, XYh4

crosses over to the four-state clock model, which is equivalent
to two perpendicular Ising models, and the transition falls into
the Ising universality class [49]. The non-universal transition
for XYh4 is hence bounded by the Ising universality class for
large h4.

The non-universal exponents of XYh4 can be calculated
analytically within the framework proposed by JKKN. They
showed that to describe the evolution of the KTB transition in
the presence of a weak p-fold field it is sufficient to replace (1)
by the generalized Villain Hamiltonian [22, 50]

H
kBT

= −K
∑

〈i, j〉

[
1−1

2
(θi−θ j−2πmi j)

2

]
+

∑

i

ipniθi

+log(y0)
∑

i

S2
R+log(yp)

∑

i

n2
i , (2)

where K = J/kBT . The integers mi j maintain the periodicity
of the original Hamiltonian, for rotations over an angle 2π . SR

is a directed sum of integers mi j around a square plaquette of
four sites centred at 	R: SR = m41+m12−m32−m43 takes val-
ues SR = 0,±1,±2 . . . and is therefore a quantum number for
a vortex of spin circulation centred on the dual lattice site 	R. y0

is related to the chemical potential μ and fugacity y for the cre-
ation of a vortex–anti-vortex pair on neighbouring dual lattice
sites: y = y0 exp(−βμ)≈y0 exp(−π2 K/2). In the original
Villain model y0 = 1 but it is introduced here as a phenomeno-
logically small parameter which is renormalized in the subse-
quent flows. Similarly yp is a fugacity for a locking process
of spins along one of the p-fold field directions with integer ni

being a measure of the strength of this process at site i . For
weak crystal fields, yp = 1

2 h̃ p with h̃ p = (h p/kBT ), which
reproduces the field contribution to the partition function to
leading order in yp. For strong fields yp→1 and (2) transforms
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into a discrete p-state model. Note, however, that this is not the
p-state clock model: although the Villain model maintains the
global rotational symmetry it destroys the local O(2) symmetry
of the pair interaction. The discrete terms (θi−θ j−2πmi j)

2,
θi = (n/p)2π, n = 0, 1, . . . , p−1 hence do not have this
symmetry over the interval −π < (θi−θ j−2πmi j) < π . For
p = 4 this means that neighbouring spins orientated perpen-
dicularly have an energy less than half that of antiparallel spins
and the ordered state has lower lying excitations than the cor-
responding clock model. It is therefore not clear whether the
Villain model falls into the correct universality class in the
strong field limit and for quantitative studies one should use
Hamiltonian (1) rather than (2).

With yp set equal to zero, a direct space renormaliza-
tion analysis for the spin–spin correlation functions resulting
from (2) leads to RG flow equations for an effective coupling
constant Keff and vortex fugacity, y. For Keff = 2/π , y = 0,
the flows yield the KTB transition [51]. In the presence of the
p-fold field the flow equations are modified and a third equa-
tion is generated [22, 52]. For the explicit case with p=4, these
are

(K −1)′ = K −1+4
(
π3 y2

0e−π2 K −4π K −2 y2
4e−4K −1

)
ln(b) (3a)

y ′
0 = y0+(2−π K )y0 ln(b) (3b)

y ′
4 = y4+

(
2−4K −1

π

)
y4 ln(b), (3c)

where b is the scale factor and where the equations are valid
as b→1. This set of equations has fixed points at K ∗ = 2/π ,
y∗

0 = ±y∗
4 . We can calculate the linearized transformation

matrix evaluated at the fixed point, ∗: Mi, j = ∂ Ki
∂ K j

|∗, where

Ki = K −1, y0, y4.
Solving for the eigenvalues we find

λ = 1, 1+α

2
±1

2

√
4a2+α2, (4)

where α = 16π2(2π−1)ỹ2e−2π ln(b), a2 = 2γ δ, δ = 4
π

ỹ
ln(b), γ = 8π3 ỹe−2π ln(b), and where y0 = y4 = ỹ. Writing
λ = bσ we extract the three scaling exponents. There is one
relevant exponent, which is interpreted as σ1 = 1/ν, the expo-
nent taking the coupling constant away from the critical value
at the now regular second-order phase transition. There is also
one irrelevant variable σ2, which is interpreted as driving the
vortex fugacity to zero. Finally, there is one marginal variable,
σ3, which, as announced, corresponds to the scaling exponent
of the four-fold crystal field. Taking h4 = 0 all eigenvalues
become marginal, consistent with the particular scaling prop-
erties of the 2dXY model. In the small field limit, σ1 = −σ3 =
4πe−π h̃4 and σ2 = 0. This gives the non-universal correla-
tion length exponent [22] ν≈1.8(kBTKT/h4). The strong field
limit, y4 = 1 gives ν≈0.47, which should be compared with
the exact result for the Ising model, ν = 1. The agreement is
poor, as might be expected given the distortion of the four-fold
interaction imposed by the Villain model. It is clear from this
result that a quantitative calculation for the strong field limit
requires a different starting Hamiltonian.

In order to calculate β from the scaling relations [53], a
second relevant scaling exponent is required. In this case the

anomalous dimension exponent η can be calculated directly
from the correlation function [22]. At the KTB transition of the
XY model, η = 1/4, giving the universal value in the effec-
tive spin stiffness, Keff = 2/π . It follows from the scaling
relation 2β = (d−2+η)ν that the finite size scaling exponent
β/ν = 1/8, as in the Ising model, despite the fact that here
the true β and ν are not defined. This is an example of ‘weak
universality’ [54] between the two models. A striking result in
the presence of a four-fold field is that η remains unchanged
to lowest order in h4 [22], indicating that a weak universal
line extends out from the XY model along the h4 axis. Here
we make the hypothesis that the line extends right to the Ising
limit, in which case η = 1/4 for all h4. This is clearly a rea-
sonable assumption for the level of calculation made here. It
is also an appealing result as other examples of weak univer-
sality are far less accessible to experiment [55]. Analysis of
the numerical data presented in the next section lends weight
to this hypothesis, although the observed behaviour is found to
divide into two regimes, depending on the strength of the h4

field.
From this analysis we therefore predict a range of non-

universal magnetization exponents going from

β≈1

8

(
1.8kBTKT

h4

)
(5)

for weak field, to β = 1/8 in the strong field limit. To make
quantitative comparison with simulation and experiment we
need to estimate β as a function of h4/J . The critical value
K ∗ = 2/π corresponds to a renormalized coupling constant,
Jeff, valid at large length scale such that kBTKT = π Jeff/2. In
general Jeff < J : for the Villain model kBTKT≈1.35J [56],
while for the XY Hamiltonian (1) kBTKT/J≈0.9 and is differ-
ent again for more realistic Hamiltonians. Hence, while we
can make a theoretical prediction for the low field behaviour,

β = 1

8

(
AJ

h4

)
, (6)

with A a constant of order unity, scaling equation (5) by a fac-
tor kBTKT/J will probably not lead to an accurate quantitative
estimate for A and the precise value is beyond the scope of the
present calculation.

4. Competition with essential finite size effects

The survey of the β values illustrated in figure 1 shows a clear
discrepancy between theory presented above and experiment:
the large values of β predicted for small h4 do not appear
and the range of values is cut off at β≈0.23. As the latter is
an effective exponent characteristic of XY criticality up to a
finite length scale, it seems clear that the non-universal criti-
cal phenomena are suppressed, for weak field, by the excep-
tional finite size scaling properties of the pure 2dXY model
[21, 57, 58]. This hypothesis can be tested by numerical sim-
ulation, in which both h4 and the system size may be directly
controlled.

4
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m

XY
h4 = 0.1
h4 = 0.5
h4 = 1
h4 = 2
h4 = 5
4-state clock

2d Ising

2dXY

0

0.2

0.4

0.6

0.8

1

(a)

(b)

Figure 2. Monte Carlo data for the 2dXY model in the presence of a
four-fold crystal field, with N = 104. Plot (a) displays the
magnetization data of the XY model in the presence of increasingly
strong anisotropies. Plot (b) displays the same data as a function of
reduced temperature t , in a logarithmic scale. In both plots the
‘universal window’ is highlighted by the (blue) shading.

In a real XY system the relevant length scale will in most
cases be less than the physical size of the system: for example,
it could be a coherence length controlled by defects or dipolar
interactions [59], or, in the case of layered systems, a crossover
scale to the third dimension [60, 21]. Thus, although real sys-
tems might have, for example, 1016 spins, the relevant scale
for XY critical behaviour will typically be much smaller and
compatible with the scale of Monte Carlo simulations, where
the appropriate length scale is simply the system size. This
finite length scale gives rise to a finite magnetization that dis-
appears at the rounded KTB transition. As emphasized in [21],
this is perfectly consistent with the Mermin–Wagner theorem
[61], which proves that the magnetization will be strictly zero
in the thermodynamic limit. It is easy to convince oneself that
finite size corrections to the thermodynamic limit are important
for any physically realizable cut off length scale. The resulting
low temperature magnetization is therefore directly relevant for
experiment.

In figure 2(a) we show the magnetic order parameter,

m = 1

N

〈∣∣∣∣∣
∑

i

Si

∣∣∣∣∣

〉
,

the thermally averaged magnetic moment normalized to unity,
versus temperature, with different four-fold field perturbations,

for a system with N = 104 spins. For h4 = 0 the mag-
netization is characterized by the effective critical exponent,
β̃≈0.23. A finite size analysis of Kosterlitz’ renormalization
group equations shows that in the region of the transition it
approaches a universal number β̃ = 3π2/128≈0.23, in agree-
ment with both experiment and simulation data, such as that
shown here. For weak crystal field, h4 there is no change in
the region of the transition and the magnetization data coin-
cide with the data for zero field [62]. Only for h4/J � 0.5 do
they leave the zero field data through the transition, approach-
ing results for the four-state clock model for large values of
h4/J . In figure 2(b) we show log(m) against log(t), where
t = (T −Tc)/Tc. The transition temperature Tc is calculated
from a finite size scaling analysis of the fourth-order Binder
cumulant for m [63, 64, 59] and is an estimate of the value in
the thermodynamic limit. The slopes, for small t , give a first
estimate of the exponent β , indicating that it lies in the interval
1/8 < β(h4) < 0.23 for all values of h4, exactly as observed
in experiment. The crossover to Ising behaviour is slow: for
h4/J = 1, β(h4)≈0.15 and to approach β≈1/8 requires h4/J
in excess of 5.

Hence the data here, as in previous numerical work [62,
65, 64], show evidence for a finite pocket of XY critical
behaviour for small values of h4. This appears to refute the
prediction of JKKN, derived explicitly in the previous sec-
tion, that the exponents vary continuously with h4 [65] (see
the further discussion below). For intermediate field strengths,
however, the non-universal criticality does appear to hold as
can be confirmed by a more detailed finite size scaling analy-
sis. The values of β and ν can be estimated more accurately
by collapsing data for various system sizes onto the scaling
relation mLβ/ν = f (t L1/ν), where f is a scaling function.
The best data collapses for h4/J = 1 and 2, with Tc in each
case fixed from the Binder cumulant calculation, are shown
in figure 3. We find β = 0.148(5) and β = 0.136(10), in
good agreement with the values found from figure 2(b), and
ν = 1.19(4), ν = 1.09(8). The ratio β/ν = 0.126(4) in
each case is in agreement with the weak universality hypoth-
esis. Similar results for h4/J = 0.5 can be found in [65].
Although these exponent values are not so different from the
Ising model values, the data collapse is less satisfactory when
Ising exponents are used.

Further evidence for weak universality at intermediate field
strengths can be found from studying the finite size scaling
properties of m at the transition. In figure 4 we show log(m)

against log(L) for h4/J = 1 for a range of temperatures near
the transition. At the transition one expects a power law evo-
lution characterized by the finite size scaling exponent η/2 =
β/ν. The best power law occurs at Tc = 1.010(5)J , which is
the same as the value found from the Binder cumulant method.
The scaling exponent η/2 = 0.126(3), is the same as that
found for the data collapse in figures 3(a) and (b).

This and previous numerical work [62, 65, 64, 66] are con-
sistent with h4 being marginal. In this case the crossover expo-
nent to the new universality class is zero so crossover occurs, at
best on exponentially large length scales, as a result of correc-
tions to scaling [62]. Hence, for small and intermediate crystal
field strengths the finite size scaling appears compatible with

5
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Figure 3. Best data collapses for the 2dXY model with four-fold crystal field h4/J = 1.0 and 2.0 for different system sizes.

Figure 4. Magnetization m against system size L , on a log–log scale,
for the 2dXY model with four-fold crystal field h4/J = 1.0, for
temperatures near the transition.

that of the continuous symmetry of the 2dXY model [62], as
in the six-fold case. In fact the most detailed finite size scal-
ing analysis [65] shows no evidence of such a crossover for
small fields. It therefore remains an open question whether the
pocket of pure XY behaviour for small h4/J is a pragmatic
observation related to excessively slow crossover, or whether
it remains right to the thermodynamic limit. In either case this

is the main result of this section: large values of β are indeed
masked by the pocket of 2dXY behaviour, leading to the effec-
tive exponent β̃ for weak h4 and creating a divide between
systems with strong and weak four-fold fields, with the non-
universal character of XYh4 only appearing for β(h4) < 0.23.
The threshold value of h4, separating the two regimes can
be estimated theoretically by putting β(h4) = 0.23 in equa-
tion (6). Using kBTKT/J≈0.9 gives A = 1.6 and h4/J≈0.9, a
ratio of order unity, in agreement with the above general argu-
ments, but an over estimate compared with numerics, where
the change of regime occurs for h4/J∼0.5, corresponding to
A≈1.

Having confirmed that η≈0.25 over the whole range of h4,
we finally fix η = 0.25 and use our estimates of ν(h4) from
the scaling collapse to give a further estimate of the exponents
as a function of h4. The estimates of ν and β , summarized in
table 2, are in good agreement with all previous unconstrained
estimates. We also include estimates of β(T L

c ) derived by a
typical experimental analysis of fixing T L

c from the maximum
in the susceptibility or where the magnetization approaches
zero, and deriving β from a log–log plot. There is seen to be
a systematic error between the different estimates of β , espe-
cially for small values of h4. Nevertheless, the experimental
exponents are still found to lie in the universal window of val-
ues predicted for the ‘true’ exponents of the underlying model.
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Figure 5. Exponents β and ν measured from a finite size scaling
analysis of the Monte Carlo data plotted against 1/h4.

Table 2. Critical exponents for the XYh4 model, as determined from
a finite size scaling analysis, and as measured directly from Monte
Carlo magnetization data for a system of size L = 100.

h4 ν β T L
c β(T L

c )

0.5 1.37(6) 0.171(10) 1.01(1) 0.214(9)
1 1.19(4) 0.148(5) 1.04(1) 0.196(6)
2 1.09(8) 0.136(10) 1.08(1) 0.155(3)
5 1.04(6) 0.130(7) 1.12(1) 0.129(3)
∞ 1.00(5) 0.125(6) 1.14(1) 0.123(3)

The various critical exponents plotted in figure 5 are found to
be linear in 1/h4. By fitting to β(h4) = 0.125+a/h4, we esti-
mate the constant a to be 0.032 for the ‘true’ exponents, and
0.05 for the experimental exponents. These values are clearly
very different from those expected for the constant A in equa-
tion (6), but once outside the pocket of pure XY behaviour we
are no longer in the weak field regime for which equation (6)
is valid, as was shown in the previous section.

5. Strong field–weak field divide

Experimental evidence for the strong field–weak field divide
comes from making head to head comparisons between sys-
tems listed in the appendix.

A quantitative comparison is afforded by the ferromag-
net Rb2CrCl4 [67] and the antiferromagnet K2FeF4 [31], both
quasi-two-dimensional square lattice systems with S = 2. In
both systems the intra-plane isotropic exchange coupling, J ,
is much bigger than the inter-plane value J ′, giving rise to
an extended temperature range with two-dimensional critical
fluctuations. However, while the ferromagnet shows all the
characteristics of the pure XY universality class [25, 68], the
antiferromagnet has non-universal exponents, with β = 0.15
[31], which we now see to be consistent with XYh4. A realistic
model Hamiltonian for either system has the following form

H = J0

∑

〈i, j〉
Si · S j+D

∑

i

(Sz
i )

2+ 1
2 e(S4

++S4
−), (7)

Table 3. Main parameters for K2FeF4 and Rb2CrCl4, as determined
from experiment [31, 67].

K2FeF4 Rb2CrCl4

S 2 2
J (K) −15.7 15.12
D (K) 5.7 1.06
E (K) −0.49 0.123
D̃ 0.363 0.07
ẽ 0.0052 0.0013
β 0.15(1) 0.230(2)

where the weak inter-plane exchange and a weak fourth-order
axial term are ignored (in the case of Rb2CrCl4 small depar-
tures from tetragonal symmetry are neglected for the purpose
of this discussion).

The crystal field D confines the spins to an easy plane
breaking the O(3) rotational symmetry of the Heisenberg
exchange and the four-fold term e breaks symmetry within
that plane, putting Hamiltonian (7) in the XYh4 universality
class. For both Rb2CrCl4 and K2FeF4 accurate estimates of
the Hamiltonian parameters were derived by fitting magnon
dispersions measured by neutron scattering to a self-consistent
spin wave calculation [31, 67, 69]. However, in order to fit the
spectra, the fourth-order term was decoupled into an effective
second-order term, with amplitude E≈6eS2. In the low tem-
perature limit one can estimate parameters ẽ = |eS4/J0S2|
and D̃ = |DS2/J0S2|. Values are shown in table 3 for both
materials.

To get an estimate of the four-fold field that determines
the critical exponents, it is tempting to assume that systems
with S = 2 are classical and to associate ẽ with the parameter
h4/J arising from equation (1). The parameter ẽ = 0.0013
for Rb2CrCl4 and 0.0052 for K2FeF4, which seem sufficiently
small to put both systems into the weak field regime with pure
XY universality, as has been directly confirmed by numeri-
cal simulation [70]. However, assigning an effective classi-
cal Hamiltonian of the form (1) for systems with finite S is
not so straightforward: for finite S, through the uncertainty
principle, out-of-plane and in-plane spin fluctuations are not
statistically independent. As a consequence the energy scale
for in-plane spin rotations and the consequent effective value
for h4 depend collectively on J and D as well as on ẽ. This
can be seen from a detailed consideration of the magnon dis-
persion arising from (7). This calculation reveals a distinct
difference between the ferromagnetic and antiferromagnetic
cases, with the latter retaining strong quantum effects even
for S = 2. For the antiferromagnet one finds two magnon
branches which, for D = e = 0, are degenerate and gapless
for zero wavevector and where each mode constitutes a con-
jugate in-plane and out-of-plane spin fluctuation term of equal
amplitude. For finite crystal field strength the degeneracy is
lifted, energy gaps appear everywhere in the spectrum and
the symmetry is broken between the in-plane and out-of-plane
fluctuation amplitudes. In the following we refer to a mode
as in-plane or out-of-plane if the conjugate variable with the
largest amplitude is in or out of the plane. To lowest order in

7
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1/S the out-of-plane branch develops a gap at zero wavevector:

1 = S [2(D+|E |)(2|J |z+4|E |)]1/2 ≈2S
√

Dz|J |, (8)

while the in-plane branch has

2 = S [(4|E |)(2|J |z+2D+2|E |)]1/2 ≈2S
√

2|E |z|J |, (9)

(here z = 4). These gaps depend on the geometric mean of the
exchange field z J and the crystal field e or D with the result
that they are surprisingly large on the scale of J , as noticed by
Thurlings et al [31]. For K2FeF4 1 = 70.8 K, 2 = 23.9 K at
4.2 K, renormalizing only weakly with temperature [31]. 1 is
larger than the transition temperature, TN = 63 K≈J S2, so
the out-of-plane branch of spin fluctuations will be frozen by
quantum effects over the whole of the ordered phase, leaving
the predominantly in-plane spin fluctuations only. Interpreting
these as the classical fluctuations in an effective plane rotator
model with Hamiltonian (1) leads to a crystal field, h4(eff),
of the order of 2. This gives h4(eff)/J S2∼0.33 which is the
right order of magnitude to fall into the strong field category.
The fact that for K2FeF4, TN/J S2≈1, as is the case for the
model systems with Hamiltonian (1) presented in the previous
section, is highly consistent with this interpretation. Higher
order terms in 1/S renormalize D and |E | such that the values
given in table 3 are higher than those predicted by fitting to lin-
ear spin wave theory. One can further speculate that quantum
fluctuations for the in-plane branch will renormalize the effec-
tive h4 in (1) [64] to an even higher value. The non-universal
exponents observed for K2FeF4 could therefore be examples of
the XYh4 universality class.

For the ferromagnet Rb2CrCl4, D flattens the cone of spin
precession, giving a range of q values where the energy spec-
trum varies approximately linearly with wavevector, but does
not open a gap. The field e opens a zero wavevector energy
gap that varies as

√
De. It is of order 1 K, decreasing to zero at

the transition temperature Tc = 52 K, and so can hardly affect
the thermodynamics in the critical region. Although the effec-
tive value of h4 depends on the geometric mean of D and e
rather than just the bare value of e, it is independent of J and
hence much smaller than for the antiferromagnetic case. This
places Rb2CrCl4 in the weak field regime, consistent with the
observation of XY universality for this material [25, 68].

From this comparison, it seems likely that magnetic sys-
tems that show true XYh4 universality will mostly be anti-
ferromagnetic. Indeed a similar ‘spin dimensional reduction’
due to quantum suppression of fluctuations has recently been
observed in quantum Monte Carlo simulations with a Hamil-
tonian similar to (5) [58]. More calculations beyond the spin
wave approximation are required to clarify this point.

Among non-magnetic systems, oxygen absorbed onto
Mo(110) [37] or W(110) [71] and hydrogen on W(110) [36]
have both been claimed to fall into the XYh4 class, represent-
ing four-fold equivalents of the two-stage melting process for
hexagonally coordinated systems [45]. Note that the (110)
surface does not have four-fold symmetry, but if we adopt
these claims as a premise, then a comparison of the two sys-
tems is indeed perfectly consistent with XY h4 universality
and with the preceding arguments about the strong field–weak

field divide. Electron hybridization between absorbed and sub-
strate particles will result in the generation of electronic dipoles
aligned perpendicularly to the (110) surface. The resulting
1/r 3 interaction between the particles is repulsive and of suffi-
ciently long range to ensure crystallization into a square lattice.
The (110) surface provides a substrate potential with four-fold
topology (though not four-fold symmetry) and which can be
made commensurate with the free standing array by tuning the
adsorbate density, the clearest example being the (2×2) lattice
structure [36]. The result is claimed to be in the XYh4 univer-
sality class and the measured exponents, β0.19 [37, 71], are,
in light of the current work, consistent with this. In principle,
the same should be true for the (2 × 2) ordering transition for
hydrogen on W(110) but the measured β , 0.25, is consistent
with the pure XY model [36]. As hydrogen is so much lighter
than oxygen, larger zero point fluctuations should make the
substrate potential less effective at pinning the crystal, putting
it in the category of systems with a weak field h4, consistent
with the experimental observation.

6. Other exponents and scaling relations

Further evidence for the experimental relevance of the finite
size effects is found in the behaviour of other critical expo-
nents. The exponent η, which according to the previous weak
universality arguments should be 0.25 for all h4, is only found
to closely approximate the theoretical value for model Ising
systems such as Rb2CoF4 [72]. For model XY systems the
predicted η = 0.25 or δ = 15 are always observed at a tem-
perature well below Tc (say 0.9 Tc), with η(T ) increasing to
larger values at Tc, and δ(T ) decreasing, since δ = (4−η)/η.
For example, in the XY layered ferromagnets Rb2CrCl4 and
K2CuF4 η(T ) and δ(T ) have been measured with precision by
several different methods [26, 73, 68]: in both cases η rises to
about η = 0.35 at Tc. This is a very strong signature of the
finite size scaling properties of the XY model and is consistent
with the predicted logarithmic shift in transition temperature,
[Tc(L) − TKT]∼ 1

log2(L)
[21, 51], for a finite size system [74].

As the measured value of η increases continuously through the
transition, its value at Tc(L) is thus expected to be in excess of
η = 1/4.

It seems that the anomalous value of η > 0.25 extends to
systems with XYh4 universality: for example, in K2FeF4 it is
estimated to be η≈0.35. This is again consistent with the shift
in transition temperature observed in finite size systems. Defin-
ing Tc(L) from the maximum susceptibility leads to a shift,
[Tc(L)−Tc]∼L−1/ν . Here, in the four-fold field problem, ν >

1 which means that shift remains important even in the inter-
mediate field regime. Referring to figure 4, one can see that
extracting a critical exponent from the initial slope, for T > Tc,
will lead to an overestimate of η. As experiments do not, in
general, have access to the finite size scaling information avail-
able to numerical studies, it seems reasonable that the experi-
mental η values are generally larger than the expected thermo-
dynamic limit value. Thus, we propose that η(Tc) appearing
greater that 1/4 remains a finite size effect.

8
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Similarly, the measured values of ν are systematically
smaller than unity, while a consequence of weak universality is
that ν should be greater than one for all finite h4. For example
for K2FeF4 ν≈0.9, giving β/ν = 0.16, greater than the pre-
dicted ratio 1/8, but together with γ≈1.5 the set of exponents
do satisfy the hyperscaling relation, 2β+γ = dν, as well as
the relation β/ν = d−2+η/2. The same holds true for oxy-
gen on W(110) [71], for which β and γ have been determined
to be 0.19 and 1.48, respectively. The shift in ν is therefore
consistent with the shift in η. It seems reasonable to assume
that these changes are also due to finite size effects, which at
present prevent the observation of the weak universal line we
have shown evidence for, for all values of h4. More detailed
experimental and numerical studies to clarify this point would
be of great interest.

7. Conclusions

In conclusion, the XY model with four-fold crystal field is of
relevance to a great number of experimental two-dimensional
systems. We have focused on the largest experimental data
sets, those for two-dimensional magnets, adsorbed gaseous
monolayers and in particular on the measured exponent β .
With regard to the histogram in figure 1, the systems that com-
prise it can only be fully understood on a case by case basis.

However, we show in this paper that the Hamiltonian (1)
contains the principle two-dimensional universality classes that
are relevant to experiment and that a uniform distribution of
values h4 would, because of the marginal finite size scaling
properties of the model, produce a probability density of the
same form as figure 1 with a continuous spectrum bounded by
peaks at the Ising and XY limits. This is what we refer to as
the universal window for critical exponents. We have further
shown that the actual values of the four-fold crystal field that
occur in real systems are, at first sight, too small to take any
system away from the XY limit. However, we have identi-
fied at least one mechanism, in antiferromagnets, whereby the
four-fold field is effectively amplified by quantum confinement
of the spins to the easy plane. Other mechanisms of realiz-
ing XYh4 universality are possible in individual cases [41, 47].
We have demonstrated the relevance of finite size scaling cor-
rections to the experimental data set, with the relevant length
scale giving a crossover away from XY criticality. Future work
should focus on the finite size scaling aspects and on individ-
ual systems to see if a more accurate quantitative connection
between the physical h4 and the observed critical behaviour can
be established. Further to this, we propose here that the non-
universal exponents of XYh4 should satisfy weak universality,
with β/ν = 1/8 for all h4 and we have given evidence that this
is true in the range of intermediate field values. The robustness
of the pocket of true XY behaviour, observed for weak fields
[62, 65], in the thermodynamic limit remains an open ques-
tion. Finally, we remark that all evidence confirms that truly
two-dimensional systems, quasi-two-dimensional systems and
numerical simulations reveal the same syndrome of behaviour.
Consequently, much can be learnt about new two-dimensional
systems [2, 3] through comparisons with old ones [31, 67]. It

is fortunate that there is such an extensive and carefully deter-
mined data base.
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Appendix. Construction of the histogram of
β exponents

In constructing the histogram of experimental two-dimensional
β exponents, a number of factors were considered. First, it
was crucial to avoid circular logic by excluding those systems
which were assigned a dimensionality purely on the basis of
their exponent values, rather than on a large body of experi-
mental evidence. Fortunately, we found no such cases in the
literature. Therefore all systems included in the histogram are
assigned as two-dimensional on the basis of compelling exper-
imental evidence of two-dimensionality. Likewise we found
no examples of systems considered to be two-dimensional that
exhibit β≈1/3, which might, in the absence of extra evidence,
be mistakenly assigned as three-dimensional systems and wro-
ngly excluded from the data set. It should be noted that in
layered magnets, the crossover from two-dimensional to three-
dimensional exponents is generally very sharply defined so
there is no ambiguity in identifying the two-dimensional
regime. A second criterion for inclusion in the histogram was
that the exponents were determined with reasonable precision
and accuracy (typically β < ±0.01). This inevitably neces-
sitated a subjective judgement, but only a few results were
excluded on these grounds: typically those exponents deter-
mined by powder (rather than single crystal) neutron diffrac-
tion, which is generally accepted to be inadequate for the accu-
rate determination of β . The experimental exponents are gen-
erally not asymptotic exponents, but the numerical study pre-
sented above reveals that the difference between asymptotic
exponents and those determined using finite size scaling tech-
niques at temperatures down to ∼0.9T L

c is generally negligible
at the level of accuracy required for the present purpose. The
histogram also excludes a number of interesting systems on the
basis of there being legitimate grounds for alternative explana-
tions for their observed critical behaviour. These include meta-
magnetic materials [75], systems undergoing spin-Peierls tran-
sitions [76–78] and bulk systems undergoing order–disorder
transitions [79].

The following tables lists all the systems included in the
histogram. Table A.1 contains data for layered magnets, and
includes examples of molecular magnets [80]. Note that
K2MnF4 represents two data points in the histogram as the
elegant work of van de Kamp et al [81] used a magnetic field
to tune the system between Ising and XY symmetry, with β

9
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Table A.1. List of two-dimensional critical exponents β for layered magnets reported in the literature, mostly measured by neutron
diffraction (F = ferromagnet, A = antiferromagnet, Fo = (HCO2), chdc = trans-1,4-cyclohexanedicarboxylate,
5CAP = 2-amino-5-chloropyridinium, tetren = tetraethylenepentaamine).

System β t range Tc (K) Type Reference

Rb2CoF4 0.119(8) 1 × 10−1–2 × 10−4 102.96 A [82]
ErBa2Cu3O7 0.122(4) 0.11–1 × 10−4 0.618 A [83]
K2CoF4 0.123(8) 1 × 10−1–8 × 10−4 107.85 A [24]
BaNi2(AsO4)2 0.135 3 × 10−1–1 × 10−2 19.2 A [27]
Ba2FeF6

a 0.135(3) 7 × 10−1–4 × 10−3 47.96(4) A [84]
K2NiF4 0.138(4) 2 × 10−1–3 × 10−4 97.23 A [85]
K3Mn2F7 0.154(6) 1 × 10−1–1 × 10−3 58.3(2) A [86]
Rb2MnCl4 (B < 5.8 T) 0.15(1) 1 × 10−1–1 × 10−3 54 A [81, 87]
K2MnF4 0.15(1) 1 × 10−1–1 × 10−3 42.14 A [88]
K2FeF4 0.15(1) — 63.0(3) A [31]
Rb2MnF4 0.16(2) 1 × 10−1–3 × 10−3 38.4 A [85]
Pb2Sr2TbCu3O8 0.165(5) — 5.30(2) A [89]
BaFeF4 0.17 3 × 10−1–1 × 10−2 54.2 A [90]
Cr2Si2Te6 0.17(1) 6 × 10−1–3 × 10−2 32.1(1) F [91]
CsDy(MoO4)2 0.17(1) — 1.36 A [92]
CoCl2·6H2O 0.18 4 × 10−1–4 × 10−2 2.29 A [90]
MnC3H7PO3·H2Ob 0.18(1) 4 × 10−1–1 × 10−2 ∼15 F [93]
MnC4H9PO3·H2Ob 0.18(1) 4 × 10−1–2 × 10−2 ∼15 F [93]
KFeF4 0.185(5) 3 × 10−1–1 × 10−2 137.2(1) A [94, 90]
Fe(NCS)2(pyrazine)2 0.19(2) 2 × 10−1–3 × 10−2 6.8 A [95]
Rb2FeF4 0.2 3 × 10−1–2 × 10−3 56.3 A [85]
La2CoO4 0.20(2) — 274.7(6) A [96]
MnC2H5PO3·H2Ob 0.21(2) 6 × 10−1–9 × 10−2 ∼15 A [93]
NH4MnPO4·H2Ob 0.21(3) 8 × 10−1–2 × 10−2 17.5(1) A [93, 97]
K2CuF4 0.22 3 × 10−1–3 × 10−2 6.25 F [98]
CuFo2·4D2Oc 0.22(2) 5 × 10−1–5 × 10−2 16.72 A [99]
CuFo2·CO(ND2)2·2D2Oc 0.22(1) 4 × 10−1–1 × 10−3 15.31 A [99]
Tanol suberated 0.22 7 × 10−1–2 × 10−2 0.7 F [100]
Sr2CuO2Cl2 0.22(1) 2 × 10−1–1 × 10−2 265.5(5) A [40]
MnFo2·2H2O 0.22(1) 4 × 10−1–4 × 10−2 3.6 A [101]
La2NiO4 0.22(2) 8 × 10−2–2 × 10−3 327.5(5) A [102]
BaNi2(PO4)2 0.23 3 × 10−1–2 × 10−2 23.5(5) A [27]
Cu(DCO2)2·4D2O 0.23(1) t > 6 × 10−2 16.54(5) A [103]
Rb2CrCl4 0.230(2) 2 × 10−1–1 × 10−2 52.3 F [25]
Gd2CuO4 0.23 7 × 10−1–3 × 10−3 6.4 A [104]
(C6H5CH2NH3)2CrBr4

e 0.23 7 × 10−1–1 × 10−1 52.0(1) F [105]
KMnPO4·H2Ob 0.23(2) t > 9 × 10−2 ∼15 A [93]
(CH3NH3)2MnCl4 0.23(2) 1 × 10−2–1 × 10−3 44.75 F [106]
ErCl3 0.23(2) 4 × 10−1–1 × 10−2 0.350(5) A [107]
(d6-5CAP)2CuBr4 0.23(4) 4 × 10−2–6 × 10−3 5.18(1) A [108]
Li2VOSiO4

d 0.235(9) 4 × 10−1–2 × 10−2 2.85 A [109]
Li2VOGeO4

d 0.236 — 1.95 A [110]
(tetrenH5)0.8Cu4[W(CN)8]4·7.2H2O 0.237(12) 2 × 10−1–2 × 10−2 33.16 F [111]
La0.04Sr2.96Mn2O7

d 0.24(2) — 145.0(5) A [112]
La0.525Sr1.475MnO4 0.24(3) — 110(1) A [113]
RbFeF4 0.245(5) 6 × 10−1–1 × 10−2 133(2) A [90]
MnPS3 0.25(1) t > 3 × 10−2 78.6 A [114, 115]
Co5(OH)8(chdc)·4H2O 0.25(3) — 60.5 F [116]
YBa2Cu3O6+x 0.26(1) 5 × 10−2–5 × 10−3 410 A [117]
Rb2MnCl4 (B > 5.8 T) 0.26(1) 1 × 10−1–2 × 10−3 54 A [87, 81]
Rb2CrCl3Br 0.26(1) 9 × 10−1–1 × 10−2 55 F [118, 119]
Rb2CrCl2Br2 0.26(1) 9 × 10−1–3 × 10−2 57 F [118, 119]
KMnF4 0.26(1) 3 × 10−1–3 × 10−2 5.2(1) A [120]
RbMnF4 0.26(1) 3 × 10−1–3 × 10−2 3.7(1) A [120]

a Studied by Mössbauer spectroscopy.
b Studied by bulk magnetometry.
c Studied by proton nuclear magnetic resonance (NMR).
d Studied by muon spin relaxation (μSR).
e Studied by ac susceptibility.
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Table A.2. Summary of transition temperatures Tc and magnetization critical exponents β for epitaxial magnetic films grown on a range of
substrates. The thickness dmin denotes the thickness at which these quantities were measured and t range indicates the range of reduced
temperature over which β was measured. The magnetic anisotropy is indicated by the direction of the easy axis, and can either be
perpendicular (⊥) or parallel (‖) to the film plane.

System Structure dmin (ML) β t range Tc (K) Anisotropy Methoda Reference

Fe on
Pd(100) bct, 1 × 1 2.0 0.125(10) t < 3 × 10−2 613.1 ⊥ ECS [121]

1.2 0.127(4) 1 × 10−1–3 × 10−3 <100 ⊥ MOKE [122]
Ag(100) bcc, 1 × 1 2.5–2.7b 0.124(2) 1 × 10−1–1 × 10−3 324 ⊥ MOKE [123, 29]
W(110) bcc, 1 × 1 0.8 0.124(1) 1 × 10−1–4 × 10−3 221.1(1) ‖ [110] SPLEED [124, 4]

1.0 0.134(3) 1 × 10−1–5 × 10−2 224 ‖ [110] SPLEED [30]
1.7 0.13(2) — 317 ‖ [110] MOKE [125]

Ag(111) bcc, 1 × 1 1.8 0.139(6) 1 × 10−1–1 × 10−3 ∼450 ‖ MOKE [126]
2.0 0.130(3) 1 × 10−1–1 × 10−3 ∼450 ‖ MOKE [126]

Cu(100) fct, 4 × 1 ∼2.5b 0.17(3) 1 × 10−1–1 × 10−2 370 ⊥c MOKE [127–129]
W(110)d bcc, 1 × 1 0.82 0.18(1) 3 × 10−1–1 × 10−2 282(3) ‖ [110] TOM, CEMS [130–132]
Cu84Al16 (100) fcc, 1 × 1 4.0 0.212(5) 3 × 10−1–1 × 10−2 288(2) ‖ LMDAD [133]
W(100) bcc, 1 × 1 1.6 0.217(2) 1 × 10−1–1 × 10−2 207.8(1) ‖ [001] CEMS, SPLEED [32, 134]
Au(100) bcc, 1 × 1 1.0 0.22(1) 1 × 10−1–1 × 10−3 300 ‖ [001] SPLEED [135]

2.0 0.25(1) 2 × 10−1–1 × 10−4 290 ‖ [001] ECS [136]
W(100)d bcc, 1 × 1 1.5 0.22(2) — 282(1) ‖ [001] CEMS [4]
V(001) bcc 3 0.23(1) 2 × 10−1–2 × 10−2 ∼190 ‖ MOKE [137]
Pde — 0.2–0.4b 0.23(1) 2 × 10−1–2 × 10−2 >50 ‖ MOKE [3]
GaAs(100) bcc, 2 × 6 3.4 0.26(2) 1 × 10−1–1 × 10−3 254.8(2) ‖ MOKE [138]

Co on
Cu(111) fcc, 1 × 1 1.0 0.125 1 × 10−2–1 × 10−3 433 ⊥ TOM [139]

1.5 0.15(8) — 460 ⊥ MOKE [140]
Ni/Pt(111) fcc 1.0 0.22(2) — ∼600 ⊥ MOKE [141]
Cu(100) fcc 2.0 0.24 — ∼240 ‖ MOKE [142, 143]

Ni on
W(110) fcc, 7 × 1 2.0 0.13(6) 1 × 10−1–1 × 10−3 325 ‖ [001] FMR [144]
Co/Pt(111) fcc 1.0 0.20(2) — ∼650 ⊥ MOKE [141]
Cu(111) fcc, 1 × 1 2.0–3.0b 0.24(7) 3 × 10−1–6 × 10−3 380 ‖ MOKE [145]
Cu(100) fcc, 1 × 1 4.1 0.23(5) 3 × 10−1–1 × 10−2 284 ‖ MOKE [146, 140]

V on
Ag(100) bcc, 1 × 1 5.0 0.128(10) 3 × 10−1–2 × 10−4 475.1 ‖ [001] ECS [147]

Gd on
Y(0001) hcp 1.0 0.23(5) 1 × 10−1–8 × 10−3 156 ‖ MOKE [148]

Mn5Ge3 on
Ge(111) — 1.0 0.244 2 × 10−1–4 × 10−3 296 ‖ SQUID [149]

Mn0.06Ge0.94 on
Ge(001) 2 × 1 — 0.20(4) 2 × 10−1–4 × 10−3 303 ‖ SQUID [150]
CoAl(100) bcc, 1 × 1 0.22(2) 2 × 10−1–7 × 10−3 ∼90 ‖ MOKE [2]

a Experimental properties were measured by the following techniques: electron capture spectroscopy (ECS), magneto-optical Kerr
effect (MOKE), spin polarized low energy electron diffraction (SPLEED), torsion oscillation magnetometry (TOM), conversion
electron Mössbauer spectroscopy (CEMS), linear magnetic dichroism in the angular distribution of photoelectron intensity
(LMDAD) and superconducting quantum interference device (SQUID).
b Exponent determined by averaging over values of a range of films of different thickness.
c Reversible spin reorientation transition from ‖ to ⊥ with increasing T .
d Coated with Ag.
e Pd layers δ-doped with Fe.

recorded for both cases. In all other cases the βs are determined
in zero applied field. Table A.2 contains data for ultrathin mag-
netic films. Although there are several cases in which films of
different thicknesses have been measured in order to study
crossover to three-dimensional behaviour, only the values of β

in the two-dimensional limit are reported here and are included

as only one data point in the histogram. Finally, table A.3
includes data for adsorbed gaseous monolayers and systems
undergoing surface reconstruction and melting processes.

Our aim has been to make an exhaustive survey up to the
time of publication. We apologize to any authors whose work
we may have inadvertently overlooked, but we are confident
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Table A.3. Chemisorbed and physisorbed systems displaying two-dimensional phase transitions.

System β Model ascribed Method Reference

p(2 × 1)-O disordering on Ru(001) 0.085(15) Four-state Potts LEED [17]
(3 × 3)-Sn disordering on Ge(111) 0.11(1) Three-state Potts HASa, XRDb [34]
Ru(001)p(2 × 2)-S 0.11(2) Four-state Potts LEEDc [33]
(3 × 1) reconstruction on Si(113) 0.11(4) Three-state Potts LEED [9]
W(112)p(2 × 1)-O 0.13(1) 2d Ising LEED [5]
p(1 × 2) ↔ (1 × 1)-Au(110) 0.13(2) 2d Ising LEED [6]
p(2 × 2)-O disordering on Ru(001) 0.13(2) Three-state Potts LEED [18]
W(011)p(2 × 1)-H 0.13(4) 2d Isingd LEED [36]
Ru(001)(

√
3 × √

3)R30◦-S 0.14(3) Three-state Potts LEED [33]
p(2 × 2)-O disordering on Mo(110) 0.19(2) XYhd

4 LEED [37]
p(2 × 1)-O disordering on W(110) 0.19(5) XYhd

4 LEED [71]
Xe melting on graphite 0.23(4) 2dXY XRD [8]
W(011) p(2 × 2)-H 0.25(7) 2dXYd LEED [36]

a HAS: helium diffraction.
b XRD: x-ray diffraction.
c LEED: low energy electron diffraction.
d Model not ascribed by original authors.

that these cases would not significantly modify the form of the
histogram.
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[135] Dürr W, Taborelli M, Paul O, Germar R, Gudat W,

Pescia D and Landolt M 1989 Magnetic phase transition in
two-dimensional ultrathin Fe films on Au(100) Phys. Rev.
Lett. 62 206

[136] Rau C 1989 Ferromagnetic order and critical behaviour at
surfaces of ultrathin epitaxial films Appl. Phys. A 49 579

[137] Pärnaste M, Marcellini M and Hjörvarsson B 2005 Oscillatory
exchange coupling in the two-dimensional limit J. Phys.:
Condens. Matter 17 L477

[138] Bensch F, Garreau G, Moosbühler R, Bayreuther G and
Beaurepaire E 2001 Onset of ferromagnetism on Fe
epitaxially grown on GaAs(001) (4 × 2) and (2 × 6)
J. Appl. Phys. 89 7133

[139] Kohlepp J, Elmers H-J, Cordes S and Gradmann U 1992
Power laws of magnetization in ferromagnetic monolayers
and the two-dimensional Ising model Phys. Rev. B
45 12287

[140] Huang F, Kief M T, Mankey G J and Willis R F 1994
Magnetism in the few monolayer limit: a surface
magneto-optic kerr-effect study of the magnetic behavior of
ultrathin films of Co, Ni, and Co–Ni alloys on Cu(100) and
Cu(111) Phys. Rev. B 49 3962

[141] Ho H Y, Chen Y J, Hwang E J, Yu S K and Shern C S 2007
Depression of Curie temperature by surface structural
phase transition Appl. Phys. Lett. 90 142505

[142] Kuo C C, Chiu C L, Lin W C and Lin M-T 2002 Dramatic
depression of Curie temerature for magnetic Co/Cu(100)
ultrathin films upon deposition at elevated temperature
Surf. Sci. 520 121

[143] Gruyters M, Bernhard T and Winter H 2005 Structural effects
on the magnetix behaviour of ultrathin Co films on Cu(001)
at the Tc jump J. Magn. Magn. Mater. 292 192

[144] Li Y and Baberschke K 1992 Dimensional crossover in
ultrathin Ni(111) films on W(110) Phys. Rev. Lett.
68 1208

[145] Ballantine C A, Fink R L, Araya-Pochet J and Erskine J L
1990 Magnetic phase transition in a two-dimensional
system: p(1 × 1)-Ni on Cu(111) Phys. Rev. B 41 2631

[146] Huang F, Mankey G J, Kief M T and Willis R F 1993
Finite-size scaling behaviour of ferromagnetic thin films
J. Appl. Phys. 73 6760

[147] Rau C, Xing G and Robert M 1988 Ferromagnetic order and
critical behavior at surfeces of ultrathin V(100) p(1 × 1)
films on Ag(100) J. Vac. Sci. Technol. A 6 579

[148] Gajdzik M, Trappmann T, Sürgers C and Löhneysen H v 1998
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